

Rainwater harvesting and greywater recovery - Part 2 -

Prof. Patrice CANNAVO

AGROCAMPUS OUEST / Agreenium, France

Department of Physical Environment, Landscape Architecture Environmental Physics and Horticulture research Laboratory

Module 2: Resource use from a challenge perspective Urban Agriculture for resource efficiency and waste management

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

Course outline

1. Urban water hydrology

- 1.1 Specificities of the urban context
- 1.2 Impacts of the vegetation on water regulation
- 1.3 Soil properties (reminder)

2. Green roof potential for water runoff control

- 2.1 Roles and constitution
- 2.2 Performance

3. Greywater

- 3.1 Origin, collection, treatment
- 3.2 Greywater reuse for irrigation

4. Stormwater basin for road water runoff

- 4.1 Operation
- 4.2 Infiltration performance and clogging process

5. Self-assessment

Course outline

1. Urban water hydrology

- 1.1 Specificities of the urban context
- 1.2 Impacts of the vegetation on water regulation
- 1.3 Soil properties (reminder)

2. Green roof potential for water runoff control

- 2.1 Roles and constitution
- 2.2 Performance

3. Greywater

- 3.1 Origin, collection, treatment
- 3.2 Greywater reuse for irrigation
- 4. Stormwater basin for road water runoff
 - 4.1 Operation
 - 4.2 Infiltration performance and clogging process

5. Self-assessment

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

An ancestral technique

- Thermal isolation
 - Thick mix of soil and rooted herbaceous plants laying on low putrescible wood tiles
 - Used in Scandinavia, Mongolia...
 - Technique already used in the paleartic zone by Inuits in north America

🔅 Era

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

Rediscovery at the end of the XXth century

- Use in Germany in the 70-80s
 - Extensive green roof concept
 - Certified by a german working group (<u>http://www.fll.de/</u>)
 - Differences with ancient extensive green roofs (very small houses with solid structures) → modern extensive green roof = big houses or buildings thanks to growing media and adapted protection layers
 - 14 millions of m² in Germany

Rediscovery at the end of the XXth century

- Extension in the World
 - Innovative materials/products development in the USA
 - Japan, Scandinavia
 - In France, since $2010 = 1.10^6$ of $m^2 \cdot y^{-1}$; estimated areas in 2015
 - = 5 à 6.10^6 m² over an actual potential of 25.10^6 m²

> 2.1 Roles and constitution

Different green roof categories

	intensive	semi-intensive	extensive
Growing media thickness	> 30 cm	< 30 cm	< 8 cm
Weight	> 600 kg/m²	150 à 350 kg/m²	100 kg/m²
Support	concrete	concrete, steel, wood	concrete, steel, wood
Plant choice	very large	large	limited
Maintenance	important	limited	low
Global cost	high	average	economic

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

P. Cannavo

AGRO CAMPUS

Growing media

- **Functions**
 - Root integration (vegetation support)
 - Nutrient and water supply for plants (filter / exchange)
- Properties
 - Light, compaction resistance, high water retention capacity
- Composition
 - Organic fraction = green waste compost (leaves, bark), peat
 - Mineral fraction = light and absorbant stones = expansed clay, pumicestone, crushed bricks fragments

2. Green roof potential for water runoff control > 2.1 Roles and constitution

Vegetation (1)

- Sedums
 - Robust succulent plants, low water input,

sedum acre

sedum album

sedum floriferum

no maintenance

sedum hispanicum

sedum kamtschaticum

sedum spectabile

sedum reflexum

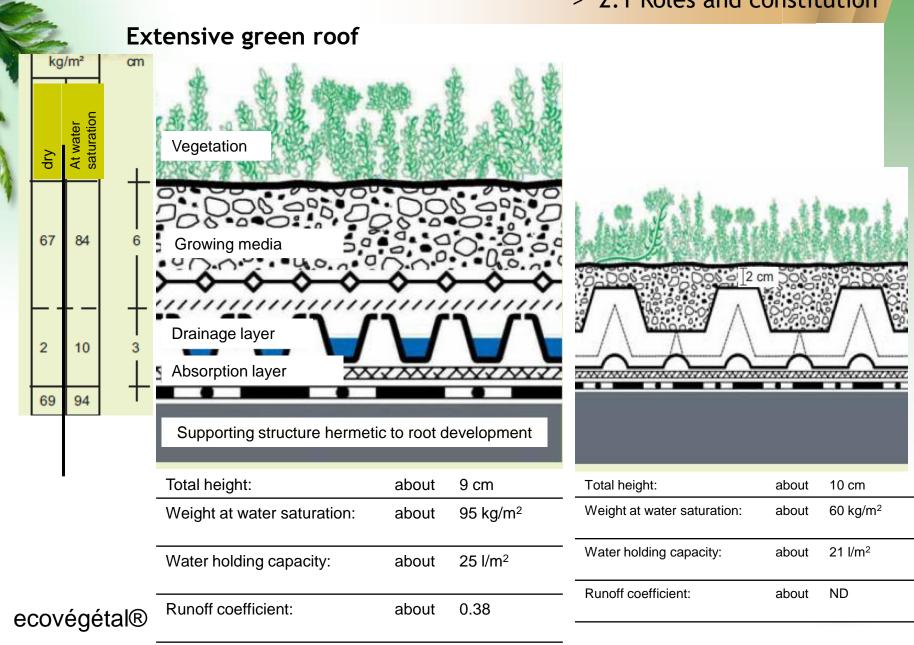
sedum sexangulare

sedum spurium

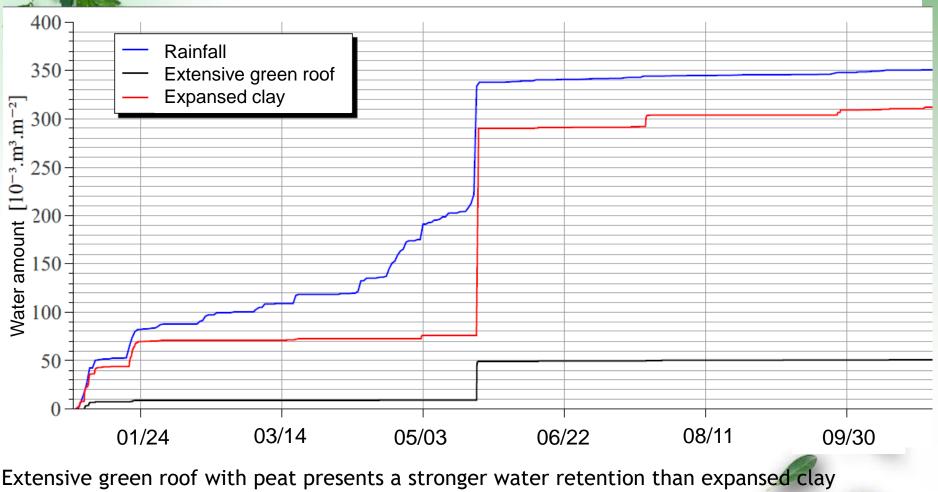
Vegetation (2)

- Cover-crops (others than sedums)
 - carnation ; gypsophila ; thyme
- Flowering plants
 - origano ; allium (chive) ; maritim thrift (Armeria maritima) ;
 dwarf lake iris (iris Pumila) ; harebell, Centaureas
- Poaceas

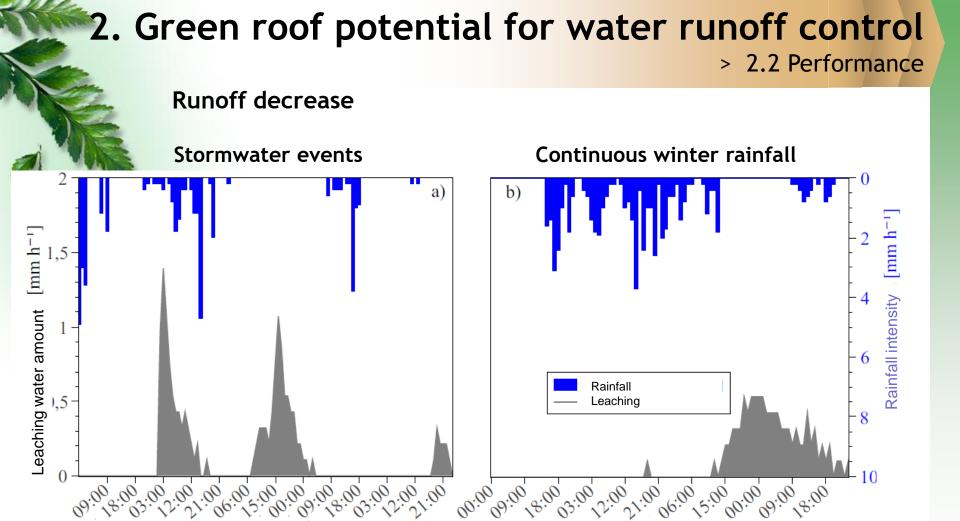
Erasmus+


- Mainly fescues ; particularly blue fescue (Festuca glauca) and amethist fescue (Festuca amethystina)

AGRO CAMPUS ouest


2. Green roof potential for water runoff control > 2.1 Roles and constitution

> 2.2 Performance


AGRC

=> Lower water drainage and though lower runoff risk

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation P. Cannavo

Phase difference of about 1 day between rainfall event and leaching beginning, corresponding to growing media water recharge (retention capacity)

=> Buffer effect of the growing media against urban water runoff

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation

P. Cannavo

Bouzouidja (2014)

Thank you for your attention !

Erasmus+ URBAN GReen Education for ENTteRprising Agricultural INnovation P